Graphene enables stretchable micro-supercapacitors to self-power wearable devices

An international team of researchers, led by Huanyu “Larry” Cheng, a Professor at Penn State, has used graphene to design a stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices.

High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams image

According to Cheng, current versions of batteries and supercapacitors powering wearable and stretchable health-monitoring and diagnostic devices have many shortcomings, including low energy density and limited stretchability. “This is something quite different than what we have worked on before, but it is a vital part of the equation,” Cheng said, noting that his research group and collaborators tend to focus on developing the sensors in wearable devices. “While working on gas sensors and other wearable devices, we always need to combine these devices with a battery for powering. Using micro-supercapacitors gives us the ability to self-power the sensor without the need for a battery.”

Read More | Graphene-Info
Graphene applications, Graphene batteries, Supercapacitors, Graphene Sensors, Medicine