Researchers develop flexible and self-adaptive airflow sensor enabled by a graphene and CNTs membrane

Researchers at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), led by Prof. Chen Tao, have developed a flexible and self-adaptive airflow sensor enabled by a graphene and CNTs membrane, which is mediated by the reversible microspring effect.

Airflow sensors based on the mechanical deformation mechanism have been drawing increasing attention thanks to their excellent flexibility and sensitivity. However, fabricating highly sensitive and self-adaptive airflow sensors via facile and controllable methods remains a challenge. Recently, inspired by the bats’ wing membrane which shows unique airflow sensing capacity, the researchers at NIMTE prepared graphene/single-walled nanotubes (SWNTs)-Ecoflex membrane (GSEM), which can be arbitrarily transferred and subsequently adapt to diverse flat/bend and smooth/rough surface. Relying on the reversible microspring effect, the researchers developed a highly sensitive and self-adaptive GSEM-based airflow sensor.

Read More | Graphene-Info
Carbon Nanotubes, Graphene applications, Graphene Sensors, Technical / Research