Researchers design an accurate, high-speed, portable bifunctional electrical detector for COVID-19

A research team at South China University of Technology, Peking University and other China-based universities have developed an accurate, rapid, and portable electrical detector based on the use of graphene field-effect transistors (G-FETs) for detection of RNA from COVID-19 patients.

Schematic diagram of the operation procedure of our G-FET-based biosensing system for COVID-19 image

The detection system consists of two main parts: a plug-and-play packaged biosensor chip and an electrical measurement machine. The unique feature of this method is that the extent of hybridization between the ss-DNA probe and viral RNA can be directly converted to the current change of graphene channels without repetition of the PCR process. Furthermore, this method was validated using clinical samples collected from many patients with COVID-19 infection and healthy individuals as well, and the testing results were in full agreement with those of PCR-based optical methods.

Read More | Graphene-Info
Graphene applications, Graphene Sensors, Medicine, Transistors