Princeton researchers discover topological quantum states in ‘magic angle’ graphene

Researchers from Princeton, in collaboration with the National Institute for Materials Science in Japan, have discovered that, under certain conditions, interacting electrons in ‘magic angle’ graphene can create topological quantum states. This finding may hold potential for revolutionizing electrical engineering, materials science and especially computer science.

‘Magic’ angle graphene and the creation of unexpected topological quantum states imagethe different insulating states of the magic-angle graphene, each characterized by an integer called its “Chern number,” which distinguishes between different topological phases. Image from Princeton webstie

Topological states of matter are particularly intriguing classes of quantum phenomena. Their study combines quantum physics with topology, which is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed.

Read More | Graphene-Info
Technical / Research